1. Shokoohi M, Baneshi MR, Haghdoost AA. Estimation of the Active Network Size of Kermanian Males. Addiction and Health 2011; 2(3-4): 81-88.
2. Prison and AIDS: UNAIDS point of view. [cited 2013 May). Available at: http://www.unaids.org/en/media/unaids/contentassets/dataimport/publications/irc-pub05/prisons-pov_en.pdf
3. Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM. Review: a gentle introduction to imputation of missing values. J Clin Epidemiol 2006; 59(10): 1087-91. doi:
10.1016/j.jclinepi.2006.01.014
4. Marshall A, Altman DG, Royston P, Holder RL. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Med Res Methodol 2010; 10(1): 7. doi:
10.1186/1471-2288-10-7
5. Knol MJ, Janssen KJM, Donders ART, Egberts ACG, Heerdink ER, Grobbee DE, et al. Unpredictable bias when using the missing indicator method or complete case analysis for missing confounder values: an empirical example. J Clin Epidemiol 2010; 63: 728-36.
6. Barzi F, Woodward M. Imputations of missing values in practice: results from imputations of serum cholesterol in 28 cohort studies. Am J Epidemiol 2004; 160(1): 34-45. doi:
10.1093/aje/kwh175
7. Baneshi MR, Talei AR. Impact of imputation of missing data on estimation of survival rates: an example in breast cancer. Iranian Journal of Cancer Prevention 2010; 3(3): 127-31.
8. Baneshi MR, Talei AR. Prevention of Disease Complications through Diagnostic Models: How to Tackle the Problem of Missing Data? Iran J Public Health 2012; 41(1).
9. Vargas-Chanes D, Decker PA, Schroeder DR, Offord KP. An Introduction to Multiple Imputation Methods: Handling Missing Data with SAS@ V8. 2. Rochester, MN: Mayo Foundation; 2003.
11. Horton NJ, Kleinman KP. Much Ado About Nothing: A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models. Am Stat 2007; 61(1): 79-90. doi:
10.1198/000313007X172556
13. Marlin BM. Missing data problems in machine learning. Toronto: University of Toronto; 2008.
14. Klebanoff MA, Cole SR. Use of multiple imputation in the epidemiologic literature. Am J Epidemiol 2008; 168(4): 355-7. doi:
10.1093/aje/kwn071
15. Harel O, Zhou XH. Multiple imputation: review of theory, implementation and software. Stat Med 2007; 26(16): 3057-77. doi:
10.1002/sim.2787
16. Chen Q, Wang S. Variable selection for multiply-imputed data with application to dioxin exposure study. Stat Med 2013. [In Press] doi:
10.1002/sim.5783
17. Faris PD, Ghali WA, Brant R, Norris CM, Galbraith PD, Knudtson ML. Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses. J Clin Epidemiol 2002; 55(2): 184-91.
18. Van Buuren S, Groothuis-Oudshoorn K. MICE: Multivariate imputation by chained equations in R. Journal of Statistical Software 2011; 45(3): 1-68.
19. JC W. Multiple Imputation For Missing Data: What Is It And How Can I Use It? Annual Meeting of the American Educational Research Association; Chicago, IL; 2003.
20. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. Stat Med 2010; 30(4): 377-99. doi:
10.1002/sim.4067
21. Suraphee S, Raksmanee C, Busaba J, Chaisorn C, Nakornthai W. A Comparison of Estimation Methods for Missing Data in Multiple Linear Regression with Two Independent Variables. Thailand Statistician 2006; 4: 13-26.
22. Lin TH. A Comparison of multiple imputation with EM algorithm and MCMC method for quality of life missing data. Qual Quant 2010; 44: 277-87. doi:
10.1007/s11135-008-9196-5
23. N.Otwombe K, Galpin J. Weighting Method for Binary Longitudinal Data With Incomplete Covariates and Outcomes Incorporating Auxiliary Information. Available at: http://www.statssa.gov.za/ycs/SpeakerPresentations/Acropolis5/Day3/Session%20VIIID_Prof.%20Jacky%20Galpin/Otwombe%20Kennedy.pdf
24. Allison PD. Missing Data. Available at: http://www.statisticalhorizons.com/wp-content/uploads/2012/01/Milsap-Allison.pdf.
25. Baneshi MR, Talei AR. Does the Missing Data Imputation Method Affect the Composition and Performance of Prognostic Models? Iran Red Crescent Med J 2012; 14(1): 51-6.
26. Yuan YC, editor. Multiple imputation for missing data: concepts and new development (version 9.0). 2000. Available at: http://www.math.montana.edu/~jimrc/classes/stat506/notes/multipleimputation-SAS.pdf
27. Bernaards CA, Farmer MM, Qi K, Dulai GS, Ganz PA, Kahn KL. Comparison of Two Multiple Imputation Procedures in a Cancer Screening Survey. J Data Sci 2003; 1: 1-20.
28. Catellier DJ, Hannan PJ, Murray DM, Addy CL, Conway TL, Yang S, et al. Imputation of missing data when measuring physical activity by accelerometry. Med Sci Sports Exerc 2005; 37(11 Suppl): S555. doi:
10.1249/01.mss.0000185651.59486.4e
29. Cheng Y, Sherman SG, Srirat N, Vongchak T, Kawichai S, Jittiwutikarn J, et al. Risk factors associated with injection initiation among drug users in Northern Thailand. Harm Reduct J 2006; 3: 10. doi:
10.1186/1477-7517-3-10
30. Van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med 1999; 18(6): 681-94.
31. Kristman VL, Manno M, Cote P. Methods to account for attrition in longitudinal data: do they work? A simulation study. Eur J Epidemiol 2005; 20(8): 657-62. doi:
10.1007/s10654-005-7919-7
32. Janssen KJM, Donders ART, Harrell FE, Vergouwe Y, Chen Q, Grobbee DE, et al. Missing covariate data in medical research: to impute is better than to ignore. J Clin Epidemiol 2010; 63(7): 721-7. doi:
10.1016/j.jclinepi.2009.12.008